EE 330 Lecture 16

Devices in Semiconductor Processes

- Diodes (continued)
- Capacitors
- MOSFETs

Fall 2024 Exam Schedule

Exam 1 Friday Sept 27 Exam 2 Friday October 25 Exam 3 Friday Nov 22 Final Exam Monday Dec 16 12:00 - 2:00 PM

Review from Last Lecture

Diode Models

Which model should be used?

The simplest model that will give acceptable results in the analysis of a circuit

- How are piecewise models accommodated?
- Will address the issue of how to rigorously analyze nonlinear circuits with piecewise models later

Use of Piecewise Models for Nonlinear Devices when Analyzing Electronic Circuits

Process:

- 1. Guess state of the device
- 2. Analyze circuit
- 3. Verify State
- 4. Repeat steps 1 to 3 if verification fails
- 5. Verify model (if necessary)

Observations:

- o Analysis generally simplified dramatically (particularly if piecewise model is linear)
- \circ Approach applicable to wide variety of nonlinear devices
- o Closed-form solutions give insight into performance of circuit
- \circ Usually much faster than solving the nonlinear circuit directly
- o Wrong guesses in the state of the device do not compromise solution (verification will fail)
- \circ Helps to guess right the first time
- o Detailed model is often not necessary with most nonlinear devices
- \circ Particularly useful if piecewise model is PWL (but not necessary)
- \circ For practical circuits, the simplified approach usually applies

Key Concept For Analyzing Circuits with Nonlinear Devices

A Diode Application

May need compensation and startup circuits If buffer/amplifier added, serves as temperature sensor at V_{OUT}

 $_{1} + \frac{1}{R} (V_{D1} - V_{D2})$ $\overline{0}$ REF \rightarrow D1 \rightarrow \rightarrow \rightarrow D1 \rightarrow D2 J $V_{\text{per}} = V_{\text{eq}} + \frac{R}{V_{\text{eq}}} (V_{\text{eq}} - V_{\text{eq}})$ R_0 ^{D_1} D_2 $V_{OUT} = 2(V_{D1} - V_{D2})$ May need com
ppropriate R₀, serves as bandgap voltage
 $V = V_{D1} + \frac{R}{V_{D1}}(V_{C1} - V_{D2})$ For appropriate R_0 , serves as bandgap voltage reference (buffer/amplifier excluded)

A Diode Application

$$
V_{\text{OUT}}=2(V_{\text{D1}}-V_{\text{D2}})
$$

Analysis of temperature sensor (assume D_1 and D_2 matched)

$$
I_{D2}(T) = \left(J_{sx} \left[T^{m}e^{\frac{V_{ss}}{V_{t}}}\right]\right)Ae^{\frac{V_{ss}}{V_{t}}}
$$
\n
$$
I_{D1}(T) = \left(J_{sx} \left[T^{m}e^{\frac{V_{ss}}{V_{t}}}\right]\right)Ae^{\frac{V_{cs}}{V_{t}}}
$$
\n
$$
I_{D1}(T) = MI_{D2}(T)
$$
\n
$$
I_{D1}(T) = MI_{D2}(T)
$$
\n
$$
I_{D2}(T) = \frac{K}{q}
$$
\n
$$
I_{D1}(T) = MI_{D2}(T)
$$
\n
$$
I_{D2}(T) = \frac{K}{q}
$$
\n
$$
I_{D1}(T) = \frac{K}{q}
$$
\n
$$
I_{D2}(T) = \frac{K}{q}
$$
\n
$$
I_{D1}(T) = \frac{K}{q}
$$
\n
$$
I_{D2}(T) = \frac{K}{q}
$$
\n
$$
I_{D1}(T) = \frac{K}{q}
$$
\n
$$
I_{D2}(T) = \frac{K}{q}
$$
\n
$$
I_{D1}(T) = \frac{K}{q}
$$

May need compensation and startup circuits

If buffer/amplifier added, serves as temperature sensor at V_{OUT}

 $_1 + \frac{1}{R} (V_{D1} - V_{D2})$ $\overline{0}$ REF \bullet $D1$ \bullet $D1$ $D2$ $D2$ $D3$ $V_{\text{per}} = V_{\text{ex}} + \frac{R}{V_{\text{ex}} - V_{\text{ex}}}$ (*V*₂₄ – *V*₂₆) *R* $V_{OUT} = 2(V_{D1} - V_{D2})$ $T = V_{OUT} - \frac{1}{2}V_{OUT}$
 $V_{CFT} = V_{out} + \frac{R}{2}(V_{ci} - V_{ci})$ For appropriate R_0 , serves as bandgap voltage reference ^{OUT} 2klnM **OUT** $V_{\alpha\beta}$ $\frac{q}{q}$ *k* ?

Analysis of V_{REF} to show output is nearly independent of T and V_{DD} is more tedious

Use of Piecewise Models for Nonlinear Devices when Analyzing Electronic Circuits

What about nonlinear circuits (using piecewise models) with time-varying inputs?

Same process except state verification (step 3) may include a range where solution is valid

Thus valid for $V_{IN} < 0$

Example: Determine V_{OUT} for V_{IN} =80sin500t

Use of Piecewise Models for Nonlinear Devices when Analyzing Electronic Circuits

Process:

- 1. Guess state of the device
- 2. Analyze circuit
- 3. Verify State
- 4. Repeat steps 1 to 3 if verification fails
- 5. Verify model (if necessary)

What about circuits (using piecewise models) with multiple nonlinear devices?

Guess state for each device (multiple combinations possible)

Example: Obtain V_{OUT}

Use of Piecewise Models for Nonlinear Devices when Analyzing Electronic Circuits

Single Nonlinear Device

Process:

- 1. Guess state of the device
- 2. Analyze circuit
- 3. Verify State
- 4. Repeat steps 1 to 3 if verification fails
- 5. Verify model (if necessary)

Process: Multiple Nonlinear Devices

- 1. Guess state of each device (may be multiple combinations)
- 2. Analyze circuit
- 3. Verify State
- 4. Repeat steps 1 to 3 if verification fails
- 5. Verify models (if necessary)

Analytical solutions of circuits with multiple nonlinear devices are often impossible to obtain if detailed non-piecewise nonlinear models are used

Diode Breakdown

- Diodes will "break down" if a large reverse bias is applied
- Unless current is limited, reverse breakdown is destructive
- Breakdown is very sharp
- For many signal diodes, V_{BR} is in the -100V to -1000V range
- Relatively easy to design circuits so that with correct diodes, breakdown will not occur
- Zener diodes have a relatively small breakdown and current is intentionally limited to use this breakdown to build voltage references

Types of Diodes

pn junction diodes

Signal or **Rectifier**

Pin or Photo Light Emitting LED Laser Diode

Zener Varactor or Varicap

Metal-semiconductor junction diodes

Basic Devices and Device Models

- Resistor
- Diode

- MOSFET
- BJT

Capacitors

- Types
	- Parallel Plate
	- Fringe
	- Junction

Parallel Plate Capacitors

$$
C = \frac{\in A}{d}
$$

Parallel Plate Capacitors

where

Fringe Capacitors d C **d ε A** $\mathbf{C} =$

A is the area where the two plates are parallel **Only a single layer is needed to make fringe capacitors**

Fringe Capacitors

Capacitance

 C_{i0} is the zero—bias junction capacitance density Model parameters {C_{jo},n,φ_B} Design parameters {A}

B

 C_{io} highly process dependent around 500aF/ μ m²

voltage dep. of C

Basic Devices and Device Models

- Resistor
- Diode
- Capacitor
- \longrightarrow MOSFET
	- BJT

2. Improved switch-level model

Switch closed for $|V_{GS}|$ = *large Switch open for* $|V_{GS}|$ = small

Improved Switch-Level Model

- Connect the gate capacitance to the source to create lumped model
- Still neglect bulk connection

Limitations of Existing MOSFET Models

Better Model of MOSFET is Needed!

n-Channel MOSFET

n-Channel MOSFET

n-Channel MOSFET

- In what follows assume all pn junctions reverse biased (almost always used this way)
- Extremely small reverse bias pn junction current can be neglected in most applications

Apply small V_{GS} (V_{DS} and V_{BS} assumed to be small) Depletion region electrically induced in channel Termed "cutoff" region of operation

 $I_D=0$
 $I_G=0$ $I_B=0$

Increase V_{GS} (V_{DS} and V_{BS} assumed to be small)

Depletion region in channel becomes larger

 $I_G=0$ $I_B=0$

Model in Cutoff Region

Increase V_{GS} more

Inversion layer forms in channel Inversion layer will support current flow from D to S Channel behaves as thin-film resistor

 $I_D R_{CH} = V_{DS}$ $I_G=0$ $I_B=0$

Triode Region of Operation

For V_{DS} small
\n
$$
R_{CH} = \frac{L}{W} \frac{1}{(V_{GS} - V_{TH}) \mu C_{ox}}
$$
\n
$$
I_D = \mu C_{OX} \frac{W}{L} (V_{GS} - V_{TH}) V_{DS}
$$
\n
$$
I_G = I_B = 0
$$
\nModel in Deep Tric

Behaves as a resistor between drain and source

Model in Deep Triode Region

Triode Region of Operation

Resistor is controlled by the voltage V_{GS} Termed a "Voltage Controlled Resistor" (VCR)

Triode Region of Operation

 $(V_{GS} - V_{TH})\mu C_{OX}$ CH W $(\text{V}_{\text{GS}} - \text{V}_{\text{TH}})\mu\text{C}_{\text{OX}}$ $R_{\text{cut}} = \frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $= -$ For V_{DS} larger

$$
I_{D} = \mu C_{OX} \frac{W}{L} \left(V_{GS} - V_{TH} - \frac{V_{DS}}{2} \right) V_{DS}
$$

$$
I_{G} = I_{B} = 0
$$

Model in Triode Region

Increase V_{DS} even more

 $V_{GC}(L) = V_{TH}$ when channel saturates

 $I_D=?$

 $I_G=0$

 $I_B=0$

Inversion layer disappears near drain Termed "saturation"region of operation Saturation first occurs when $V_{DS} = V_{GS} - V_{TH}$

Saturation Region of Operation

 $I_G=0$

 $I_B=0$

Termed "saturation"region of operation

Saturation Region of Operation

For V_{DS} in Saturation

$$
I_D = \frac{\mu C_{OX} W}{2L} (V_{GS} - V_{TH})^2
$$

Model in Saturn

$$
I_G = I_B = 0
$$

Model in Saturation Region

Model Summary

n-channel MOSFET

Notation change: $V_T=V_{TH}$, don't confuse V_T with $V_t=$ kT/q

Model Summary
\nn-channel MOSFET
\nion change:
$$
V_T = V_{TH}
$$
, don't confuse V_T with $V_t = kT/q$
\n
$$
V_{GS} = \frac{V_{GS} - V_{TH}}{V_{BS}} = 0
$$
\n
$$
V_{BS} = 0
$$
\n
$$
V_{GS} = V_{TH}
$$
\n
$$
V_{CS} = V_{TH}
$$
\n
$$
V_{BS} = 0
$$
\n
$$
V_{CS} = V_{TH}
$$
\n
$$
V_{BS} = 0
$$
\n
$$
V_{CS} = V_{TH}
$$
\n
$$
V_{BS} = V_{GH}
$$
\n
$$
V_{BS} = V_{TH}
$$

This is a piecewise model (not piecewise linear though) Piecewise model is continuous at transition between regions Model Parameters: $\{\mu, V_{TH}, C_{OX}\}$ Design Parameters : $\{W, L\}$

Note: This is the third model we have introduced for the MOSFET $_{\rm CH} = \frac{E}{\rm W} \frac{1}{(V_{\rm GS} - V_{\rm TH}) \mu C_{\rm OX}}$ $-V_{\text{TH}}$) μC_{ox} (Deep triode special case of triode where V_{DS} is small $\rm\,R_{CH} = \frac{1}{12} \frac{1}{(12.2 \times 10^{-3} \text{ J} \cdot \text{s}^{-1} \text{C})}$

Model Summary

n-channel MOSFET

Observations about this model (developed for $V_{BS}=0$):

 $I_D = f_1(V_{GS}, V_{DS})$ $I_G = f_2(V_{GS}, V_{DS})$ $I_B = f_3 (V_{GS}, V_{DS})$

This is a nonlinear model characterized by the functions f_1 , f_2 , and f_3 where we have assumed that the port voltages V_{GS} and V_{DS} are the independent variables and the drain currents are the dependent variables

General Nonlinear Models

 I_1 and I_2 are 3-dimensional relationships which are often difficult to visualize

Two-dimensional representation of 3-dimensional relationships

Graphical Representation of MOS Model

 $I_G = I_B = 0$

Parabola separated triode and saturation regions and corresponds to $V_{DS}=V_{GS}-V_{TH}$

Stay Safe and Stay Healthy !

End of Lecture 16